无线通信论文范本十二篇

时间:2023-03-10 14:48:04

无线通信论文

无线通信论文(篇1)

2以无线点餐系统为例探究Linux环境下的无线通信系统开发过程

无线点菜系统软件部分分为系统服务器软件和手持终端点菜软件,这两部分的软件均采用Qt开发,点菜系统服务器端需要对许多系统数据进行处理,而系统采用的数据库管理系统是一款小型数据库。

2.1无线点菜终端机的硬件、软件平台

手持点餐系统的硬件平台直接采用ARM9核心S3C2410X处理器的S3C2410开发板,主频为203MHz。这款嵌入式处理器,其具有成本低、功能低、性能高等优势。同时,准备TL—WN321G+USB网卡,与开发板的USB接口相连接,进而有效实现无线点餐的通讯功能。手持点餐系统的软件平台是基于Linux2.6操作系统基础之上的,在内核配置中设置无线网卡支持项目,结合系统添加库文件、终端系统、无线网卡驱动以及相关的配置管理工作,终端餐桌点餐系统直接利用ARM9开发板作为硬件平台,终端机在Linux2.6系统上进行操作,结合文件系统合理添加库文件、点餐中断程序等管理工具。终端点餐系统使用QT进行开发,其遵守QT/Embedded的一般程序,进而有效实现各种点餐功能。另外,鉴于餐桌终端的各种优势,充分开发了点餐娱乐系统化功能,在点餐的同时还能进行音乐、游戏、上网等功能。

2.2无线通信系统远程服务器介绍

在远程服务器上设计的点餐系统可以说是整个无线点菜系统的核心,通过该系统提供点餐初始信息选择,餐台信息选择,点餐终端机处理等数据,所有的餐台选择、点菜信息以及提交选单以及信息处理都是在这个服务器上实现的。在本软件设计中,充分利用Linux2.6系统操作系统的P机作为远端服务器,TOMCAT在服务器上建立JSP网站,使用DREAMWEAVER视觉化网页开发工具和MYSQL数据库进行网页设计开发,进一步实现数据库操作以及用户登录认证的各项功能。

2.3运行与程序

在开发板原配内核及文件平台之上,在内核配置中设计无线网卡支持,综合考虑文件系统中添加库文件、点餐终端程序、无线网卡驱动以及相应的环境和启动设置脚本,烧写入开发板,最后运行程序。

3Linux环境下的关键技术分析

3.1网络通信系统

使用WIFI通信系统进行手持客户端与服务器端之间的联系,这是无线局域网的一项标准,可以说是现代社会广泛使用的无线通信方式。其可以以无线方式将平板电脑、智能手机以及PC端进行连接,具有传输距离远、速度快等优势。随着科学技术的不断进步,WIFI技术有了突飞猛进的改善,通信质量有了大幅度提高,能够有效满足系统网络的通讯需求。相比于ZigBee、蓝牙等技术来说,WIFI的信号发射率显著较低,因此,该技术的应用也最为健康。在达到网络通信功能前,必须积极构建无线局域网系统。现阶段,创建WIFI网络主要是通过无线路由以及Window7进行创建的,在无线路由其的支持下,完成无线点餐系统的WIFI网络搭建。在这种环境中就能有效应用设计程序。

3.2Netlink

Netlink是一种数据双向传输工具,能有效时间内核数据与用户进程的特殊通信。另外,netlink也是连接内核与网络应用程序的常用接口。应用netlink接口,用户只需要在内核源码文件中新添加netlink协议即可。然后,用户态与内核态就能直接通过相关协议进行数据共享。Netlink应用标准的网络接口,内核态与API相类似,比较容易上手。另外,netlink属于异步通信方式,其用户态与内核态之间的信息传递会得以有效保障。在发送信息过程中,主需要将信息保存在接受列队中,无需等待对方接受。因此,cpu开销比较小。需注意,netlink系统调用属于同步通信机制,若进行传输的数据过大,将会严重影响系统运行的实时性。

3.3Hrtimer

计时器是操作系统重要组成部分,其实现机制有很多种。在嵌入式系统中,往往需要Hrtimer高精度定时器。Hrtimer的实现机制完全独立于定时器API,是建立在per-CPU时钟事件设备上基础上的,由于其实现需要硬件支持,故可以达到纳秒级的精度,且不会增加额外系统开销。

无线通信论文(篇2)

足球机器人是一个极富挑战性的高技术密集密集型项目,融小车机械、机器人学、机电一体化、单片机、数据融合、精密仪器、实时数字信号处理、图像处理与图像识别、知识工程与专家系统、决策、轨迹规划、自组织与自学习理论、多智能体协调以及无线通信等理论和技术于一体,既是一个典型的智能机器人系统,又为研究发展多智能体系统、多机器人之间的合作与对抗提供了生动的研究模型。它通过提供一个标准任务,使研究人员利用各种技术获得更好的解决方案,从而有效促进各个领域的发展。其听理论与技术可应用于工业生产、自动化流水线、救援、教育等实践领域,从而有效推动国家科技经济等方面的发展。机器人足球从一个侧面反映了一个国家信息与自动化领域的基础研究和高技术发展水平。

目前,国际上有机器人足球比赛分为两大系列——FIRA和Robocup。本文所要论述的系统所应用的F-180小型足球机器人比赛就是RoboCup系列中应用较广泛的一种。

F-180小型足球机器人足球比赛的示意图如图1所示,比赛双方各有5名机器人小车在场上。足球机器人系统在硬件设备方面包括机器人小车、摄像装置、计算机主机和无线发射装置;从功能上分,它包括机器人小车、视觉、决策和无线通信四个子系统。

其中无线通信系统是衔接主机和底层机器人不可缺少的一环,它必须保证从主机端到机器人底层之间的数据传送是可靠的,从而使得机器人比较能够顺利流畅进行。由于比赛双方都有多个机器人同时在场地上跑动,要求无线通信有一定的抗干扰性。无线通信系统的性能相当程度上直接影响着机器人的场上表现。

1系统的设计及实现

比赛中从摄像头来的视频信号经过计算机处理之后得到控制小车用的数据信息,而无线通信系统的就是将这些数据信息及时准确地送达场上的每一个机器人小车,系统采用广播方式,各机器人根据特定标志识别发给自己的有用数据,从而进行决策与行动。整个系统的框图如图2所示。

1.1发送端的硬件设计

发送端主要用PIC16F877单片机实现编码和对发射机的控制,计算机通过串行口发送数据,经过PIC16F877编码后再通过PTR3000无线通信模块将数据发送出去。

所采用的PIC16F877单处机是MICROCHIP公司推出的8位单片机。采用RISC指令系统和哈佛总线结构,最高运行的时钟频率可达20MHz,因而指令运行速度快。它有很宽的工作电压范围,可直接与3.3V的PTR3000无线通信模块配合使用。

TR3000无线数据收发模块是一种半双工收发器,采用NORDIC公司的nrf903无线收发芯片,工作频率采用国际通用的数传频段ISM,频段915MHz,工作频率可以在902MHz~928MHz可变。采用GMSK调制,抗干扰能力强,特别适合工业控制。灵敏度高,达到-100dBm,最大发射功率+10dBm,工作电压为2.7V~3.3V。它最多有169个频道,可满足需要多频道的场合,最高数据速率可达76.8kbps。因而完全可以满足小型组机器人通信的数传速率与距离的需要。

本系统中PIC16F877就是采用20MHz的时钟信号,能够满足即时收发数据以及编码的需要。整个系统中包含两种电源,无线通信模块的电源为3.3V,而MAX232又需要+5电源。信号线的连接也要考虑两种电平的匹配问题,在必要的地方要加上电平转换电路。

首先单片机要接收来自计算机端的数据,计算机串口输出的信号经过MAX232由232电平转换为TTL电平。但是由于单片机采用3.3V电平,因而MAX232输出的信号需经过电平转换才能输入单片机,电平转换可以采用TI公司提供的典型电平匹配电路(见图3),也可采用74LVCXX系列逻辑门来转换。

由于PIC16F877只有一个异步串行口,因而要通过16C550通用同步异步收发器(USART)芯片来扩展一个异步串行口。这样就可以保证从计算机串口输出的数据与无线通信的数据速率不同,从而使原始数据经过通信编码及打包数据量增加之后也能及时传送,并且在必要时也能将接收数据送回计算机端,实现半双工通道。系统的电路图如图4。从图4可以看出PIC单片机采用并口对16C550进行初始化配置。由于16C550共有10个寄存器,且占用了8个地址,因而PIC单片机用RA0、RA1、RA2三个通用I/O口做地址线选择16C550的各个寄存器。单片机可以不断通过RB1、RB2引脚检测TXRDY、RXRDY信号获知ST16C550是否接收到数据,还是已经发送了数据。还可以通过把16C550设置成中断方式使每接收到一个字节数据便产生一次中断使INT信号有效,单片机进入中断处理程序,从而使单片机的执行效率更高。

单片机通过自带的异步串行口输出数据到PTR3000通信模块。由于nrf903芯片接收和发送数据共用一个引脚,因而需要其他电路来解复用。最简单的方法就是在单片机的TX引脚先接一个10kΩ的隔离电阻,再与RX和PTR3000的DATA引脚相连。但是这种方法有两个缺点,它会造成发送的数据串入到单片机的接收引脚中,另外发送信号的驱动能力受到了极大的限制。因此,本系统采用了74HC244三态缓冲器作为隔离(见图4中虚线框内所示),并且通过单片机的RB4控制收发状态,因而在半双工方式下发送信号与接收信号可以互不干扰地传送。

对于通信模块工作状态的控制主要包含表1所列的这几个信号,通过单片机的普通I/O口即可控制。

表1PTR3000工作工作模式配置表

PTR3000工作模式STBYPWR-DWNTXENCS

正常工作:接收0000

正常工作:发射0010

掉电模式01XX

待机模式10XX

1.2发送端的软件设计

当系统复位时,单片机首先要对PTR3000无线通信模块和16C550的寄存器进行编程初始化。PTR3000的初始化编程是通过同步串行信号进行的,总共有三个信号CFG_CLK、CS和CFG_DATA,分别连接到单片机RC3、RB7、RC5引脚。PIC16F877单片机本身就有同步串行口功能模块,但是由于PTR3000的同步串行数据位为14位,并非整数字节,而且14位数据必须一次初始化完成,因此实际通过普通的I/O口编程来实现这14位的同步串行信号更方便一些。在整个初始化期间CS信号必须一直为高电平。这14位初始化字的定义见表2。在初始化同步串行信号输出时最高有效位在先。在对PTR3000编程前先其状态为接收状态以免在其他频率造成无线干扰,编程完成后就可以将状态改为发射状态了。

表2PTR3000初始化控制字各位定义

Bit参数名称符号参数

位数

0~1频段FB必须为了10(表示为选择频段915±13MHz)2

2~9频点CHf=902.1696+CH·0.1536(MHz)

10~11输出功率POUT发射功率≈-8dBm+6dBm·POUT2

12~13时钟分频输出Fup"00"=>Fup=fxtal

"01"=>Fup=fxtal/2

"10"=>Fup=fxtal/4

"11"=>Fup=fxtal/82

接下来对16C550的初始化设置。由于PIC16F877自身的并行口对16C550进行初始化编程设置各个寄存器,需要注意的只是在输出每一个字节之前先要通过RA0~RA2输出相应字节的地址信号。在初始化设置时将16C550的波特率设置低于76.8kbps,以保证接收的数据能够通过PTR3000即时发送。

1.3接收端的硬件设计

接收端装在每个机器人小车上,由于机器人小车的控制采用DSP控制器TMS320LF2407,因而在接收端PTR3000无线通信模块就采用TMS320LF2407来控制。通过PTR3000接收的数据直接输入DSP,由DSP进行解码,从而做出决策和发出控制信号。因而无线通信系统的接收端电路相对发送端要简单得多,只需用TMS320LF2407代替发送电路中的单片机与PTR3000模块相连接即可。PTR3000的初始化编程也就由2407的普通I/O口来实现,只不过在初始化编程之后依旧保持PTR3000处在接收状态。

2协议的设计

2.1物理层的编码设计

物理层的编码设计要根据所采用的物理器件和物理信道的特性来决定。本系统采用PTR3000无线通信模块在接收模块中为了获得0直流电平就需要在所传输的数据中逻辑“0”和逻辑“1”的数量相等。只有满足上述条件接收部分才会获得很高的接收正确率。长时间空闲也会导致接收部分的0直流电平漂移,因为长时间的空闲实际上一直发送的是逻辑“1”。

由于PTR3000的这些特性,很自然就想到采用曼彻斯特编码(Manchester)(也称为数字双向码(DigitalBiphase)或分相码(Biphase,Split-phase)。它采用一个周期的方波表示“1”,而且它的反向波形表示“0”。由于方波的正负周期各占一半,因而信号中不存在直流分量。在异步串行通信中有一个起始位“0”,因此将停止位“1”长度也设为一位,这样在一个字节共10位信号中也就不存在直流分量了。只是加了曼彻斯特编码之后原来一个字节的数据现在要两个字节才能传送。

图4

有一些数字节,不会在进行曼彻斯特编码之后的数据串口出现,但是在一个字节中也具有0直流分量的特性,也有很高的接收正确率。这类数据字节如:0xF0、0x0F、0xCC、0x33等。从码型看来其中0xF0码型定时性能是最好的(其码型见图5),它很容易使异步接收器达到同步并且不会发生错误。由于0xF0的这种特性就可以用它做同步码元,在空闲的时间内通信系统就通过一直发送同步码元,使接收端保持同步,而且也可以保持接收模块的0直流电平状态。

2.2纠错编码设计

为了在有一定外界干扰的情况下,保证主要与机器人之间的无线通信依然稳定可靠,必须采取一定的抗干扰措施,这可以采用纠错编码来实现。可以选择纠错编码方案有(14,8)分组码、(7,4)分组码和循环码,需要使用两字节的长度发送一字节的有效信息;(5,2)分组码和循环码,交错码、(21,8)分组码和缩短循环码、(21,9)BCH码、(21,12)BCH码,需要使用三字节的长度发送一字节的有效信息。

系统中使用了(7,4)分组码,并在实际中取得了较好的效果。它的构成方式如下:

假定不做任何处理的原码格式为:

其高四位的监督码为:

A2A1A0

其低四位的监督码为:

B2B1B0

则编码后成为两个byte长度:

1X7X6X5X4A2A1A0

0X3X2X1X0B2B1B0

其中每个字节的最高位作为标志位,用于表示高四位和低四位,高四位用“1”做标志,低四位用“0”做标志。接收端通过检测标志进行重组和解码。对于译码基本方法有维特比译码和使用监督矩阵译码,可根据具体的编码方案灵活选用。

2.3帧格式设计

一般数据帧包括帧头、机器人标识、数据、数据校验、保留字节等内容,通常按照下面的格式排列:

帧头机器人标识数据保留字数据校验

无线通信论文(篇3)

2无线局域网的基本设备

2.1无线网卡

网卡又被称为网络适配器,它是将计算机和网络电缆连接在一起的基础设备,因此,只要采用无线信号,计算机之间就能够进行通信和数据传输,其功能和普通的电脑网卡相同,区别只是在于不用进行有线的连接。

2.2无线AP

无线AP指的是无线接人点,英文缩写为AccessPoint,主要用于无线网络的无线交换机中,它是无线网络的核心。一般情况,无线AP主要用于家庭、大楼以及园区的内部,如果移动计算机的用户想要进入网络中,就需要先进入到有线网络的接入点中,从而使得信号的覆盖范围远达几十米,甚至到上百米。

2.3无线天线

无线天线是指在信号传输过程中,将传输线中的电磁能转化为自由空间的电磁波,或者是将空间内的电磁波向传输线中的电磁专用设备转化。一般当无线网络的网络设备之间相距较远时,信号强度就会随着距离的增加而不断减弱,与此同时,信息的传送速度也会降低,这样就会导致无线网络没有办法正常的运行,这个时候就又要借助无线天线来增强所接受或是传送的信号,保证无线网络的正常运作。

2.4无线路由器

人们所熟知的无线路由器是指带有无线覆盖的路由器,一般在路由器的应用下,可以实现用户上网和无线的覆盖。另外,无线路由器可以将其无线和有线连接的终端都分配到一个子网中,从而使得子网内的各种网络设备更加方便的就能进行数据的交换。

无线通信论文(篇4)

2系统硬件设计

专家系统硬件包括嵌入式控制核心模块、测量切换矩阵模块、标准接口模块、总线控制模块、数控电源和电源管理模块、人机界面模块,以及由测试仪器设备构成的测量模块和连接被测无线通信设备的通用射频测试电缆等组成。嵌入式控制核心模块是系统的主控单元,以ARMMICRO2440A核心板为基础,嵌入了WINCE操作系统,并基于LabView开发了系统主控软件,实现对整个系统的控制与管理。测量切换矩阵模块以TMS320F28335数字信号处理器为核心,通过GPIB/VIX总线控制各种虚拟测试仪器,对采集到的信号数据进行运算和解析,并将解析后的数据上传给主控单元进行对比分析。标准接口模块提供LAN、USB、串行、GPIB、VXI等多种接口,通过切换矩阵来控制其中的射频同轴开关、可调衰减器、功率探测器和滤波放大器等接口电路。测量模块包含综合测试仪、矢量分析仪、频谱分析仪等测试仪表,用于采集所需的信号数据。总线控制模块通过RS232和1394接口实现主控单元对系统各部件的控制。数控电源和电源管理模块对系统供电进行智能化控制和管理。人机界面模块通过LCD屏实现专家对系统的操作和人机交互。

3系统软件设计

系统软件设计运用VC/VC++高级语言和NI公司的LabView,开发了故障测试诊断程序集、故障诊断专家知识库与设备信息数据库,以及仪器驱动程序集等软件系统。

3.1故障测试诊断程序集

测试诊断程序集软件由设备整机测试软件和单板测试诊断软件组成。整机测试程序根据诊断数据库提供的信息以树型方式显示功能检测项,当用户选择测试项后,系统依据测试诊断数据库中定义的测试流程完成测试并将测量结果和诊断数据库中的有关数据相比较,从而确定待测设备是否存在故障。单板诊断程序内部包括单板的各种信息注册表,该表将单板具有的所有特征信息组织在一起,可以直观显示单板中各元器件的型号参数等信息,在故障诊断过程中能以文字和图像突出显示的方式指导操作人员进行测试探头或夹具的定位,并能对故障诊断结论中的失效元件在实物图像上闪烁显示,使测试操作生动直观,诊断结果一目了然。

3.2故障诊断专家知识库与设备信息数据库

故障诊断专家知识库包括与整个诊断软件运行相关的专家诊断数据信息(如通信设备故障判别准则信息、检测参数指标、失效判据信息、检测部位-失效类型-失效判据-检测方法逻辑对照信息、故障预测结果、故障预测报告、历史维护记录、系统预设信息、代码信息等),全面反映通信设备及各板件的累计使用情况、历次维修情况、当前健康状况、损伤残留及待查隐患、任务能力评估以及预定的维修安排等,用来支持推理机根据检测数据对通信系统、子系统和设备板卡当前检测状况的变化做出正确的认定。设备信息数据库包括实时数据库和关系数据库,实时数据库用来装载来自接口适配器的实时检测数据,关系数据库用来装载通信装备整机及单板的型号、厂家、出厂日期、性能指标等基本属性信息表。

3.3仪器驱动程序

VXI总线即插即用(VPP,VXIplug&play)仪器驱动程序规范规定了仪器驱动程序开发者编写驱动程序的规范与要求,侧重于仪器的互操作性,可使得多个厂家仪器驱动程序共同使用,增强了系统级的开放性、兼容性和互换性。VPP规范提出了两个基本机构模型,第一个模型是仪器驱动程序的外部接口模型,它表示仪器驱动程序如何与外部软件系统接口,外部接口模型包括函数体、交互式开发接口、程序开发接口、VISAI/O接口和子程序接口,第二个模型是内部设计模型,它定义了仪器驱动程序函数体的内部结构,使用一些部件函数共同实现完整的测试和测量操作。

4主要技术指标

1)测试频率范围:1~500MHz。2)测试功能:频谱分析、频率/功率测量、信号激励、时域波形分析、基本电参量测量、音频信号分析、通信误码测试。3)测试速率:不小于50Mb/s。4)系统支持:VXI、PXI和LXI总线技术。5)系统软件:LabView、VisualC++。6)支持通信接口类型:GPIB接口、标准并口、RS232串口、LAN口、1394接口。7)电源及功耗:AC220V±10%、功耗不小于2kW。8)环境适应性:工作温度:-10~50℃,存储温度:-25~70℃。

5主要功能

5.1自治测试功能

系统提供序列化自动测试功能。以收信机为例,待测设备加电后,即可通过数据采集模块采集必要的数据,如电压、阻抗、频率甚至波形信号等,经过信号分析模块通过对测量的各种数据进行分析和处理完成对整机的诊断,如果整机诊断结果显示有故障,故障诊断模块会该将故障定位到某个板件,并在显示设备中显示相关结果,指导下一步的单板检测操作。单板检测需要将设备中板件卸下,插入系统的接口模块,通过宽带可控信号源模块产生板件检测所需要的电源、高频信号、逻辑信号等相关工作数据,并传送给板件,在故障诊断模块的控制下进行故障的分析诊断,可将故障定位到某级电路,甚至元器件,并通过显示设备显示测试诊断结果。

5.2故障诊断功能

系统通过不断的采集被测试设备的信息获得检测信号,通过信号处理得到设备特征信息,并与故障诊断专家知识库中的设备允许参数进行对比和一系列逻辑推理,快速找到最终故障或最有可能的故障位置,然后由用户来证实并形成诊断决策,最后建立维修方案并对设备进行维护和维修。

无线通信论文(篇5)

2配网自动化系统概述

配网自动化系统作为一种远程监控、协调、操作配电设备的自动化系统,集合了控制技术、通信技术和计算机技术,主要目的是提高配电网络的可靠性和安全性,在改进供电质量的前提下,降低资金投入,最大限度的提高安全性和可靠性。配网自动化系统结构图。配网自动化系统主要由四个部分组成:配电主站、现场监控、通信网络和配电子站。其中通信网络的主要功能是提供现场终端设备和配电主站之间的通信通道,实现数据监控和交流的功能。配网自动化系统的建立主要是为了提高供电可靠性和电压质量。按照信息流向的不同,配网自动化系统数据自动化可以分为上行数据和下行数据,其中上行数据是终端设备采集的数据向主站发送,而下行数据是主站向终端设备发送控制数据,实现控制功能。

3配网通信中无线通信技术的分类

电力系统配网自动化系统需要在主站和终端设备之间进行数据传递、控制和调节,而配电网络结构复杂,造成了通信节点多、节点相对分散、节点之间距离短的特点。无线通信技术应运而生。通常情况下,配网通信中无线通信技术可以分为:无线公网通信和无线专网通信。无线公网通信技术和无线专网通信技术各有优缺点,但是从当前的发展模式来看,无线公网通信技术具有更为广阔的发展前景和发展市场,特别是在LTE无线通信技术问世之后,极大的推动了配网通信的安全性和可靠性,将电网推向“信息化、自动化、互动化”的智能电网方向。

4LTE无线通信技术

LTE无线通信技术作为公网通信技术3G的一个延伸,改进增强了3G空中接入技术,采用OFDM和MIMO标准,大大改善了小区边缘用户的性能,提高了小区容量,并且降低了系统延迟时间。LTE无线通信技术定位于2G、3G、LTE移动业务的综合承载,以网络可靠性和安全性为出发点,致力于建立高速率、高可靠的通信网络。LTE无线通信技术和其他无线通信技术相比较具有多方面的优点:

(1)优化了空中接口技术,强化了数据传送速率;

(2)采用频分多址技术和多输入输出功能,作为无线网进化的准则;

(3)大大提高了上行速率和下行速率,能够分别达到50Mbps和100Mbps;

(4)优化了小区容量,小区之间切换性能大幅度提高;

(5)整体构架是在数据分组交换的基础进行的,能够最大限度提高数据传送效率;

(6)灵活性高,支持“配对”和“非配对”频谱分配,网络时延较低,用户面时延不大于5ms,信令面时延小于100ms。TD-LTE核心网的关键技术主要包括标识管理、节点选择、移动性管理、切换管理、IP地址分配和PDN连接服务和会话管理等,此外,为了提高通信的安全性和可靠性,系统还采用了NAS信令和RRC信令进行加密[3],进一步提高了可靠性。

5加强LTE无线通信技术可靠性的措施

LTE无线通信技术可靠性并不是传统意义上面的通信可靠性,指的是设备可靠性、网络可靠性和业务可靠性。TCP连接吞吐量和端时延成反比,当传输路径发生故障的时候,系统有两种反应机制:启用重传机制或者倒转路径,无论哪种机制,对于信息传递而言都会大大降低其可靠性和安全性,所以可靠性技术势在必行。通常情况下,提高LTE无线通信技术可靠性的方法有两种:快速检测和保护倒换技术,两者相互结合,互相补充,全面提高配电网络通信的可靠性。

5.1快速检测技术

LTE无线通信利用相邻系统之间的通信故障进行快速检测,进而快速建立起替代通道或者倒转到其他链路。当前,某些硬件设备(如SDH)提供了网络故障检测功能。典型的快速检测技术包括BFD、EthOAM、MPLSOAM,这些典型的快速检测技术能够检测相邻设备之间的报文发送和接收速率,如果在规定的时间间隔内收不到相应的报文,则进行相应的协议倒换。以BFD快速检测技术为例,BFD快速检测技术不仅能够快速检测通信故障,而且可以快速将故障通知应用层。BFD快速检测技术又可以分为BFDforPW机制和BFDforTE机制,前者主要是利用BFD完成隧道引导承载业务快速切换,达到业务保护的目的;后者是一种端到端的快速检测机制,能够检测通信隧道的链路和节点,提高通信可靠性。此外,在通信隧道LSP上面建立起BFD回话,能够利用快速检测技术检测出隧道故障,比如转发路径上的数据平面故障等等,为数据通信提供端到端的保护。

5.2保护倒换技术

保护倒转技术在快速检测技术之后,在事先建立好的通道上面,针对不同承载技术进行快速倒转,切换相关协议。在LTE网络中,保护倒转技术能够按照业务部署进行分类:L2VPN类、L3VPN类、网关类、链路类保护倒换技术。L2VPN类保护倒换技术主要是指PW冗余,L3VPN类保护倒换技术主要是指VPNFRR,网关类保护保护技术为E-VRRP,链路类保护倒换技术包括LDPFRR、混合FRR、TEFRR和TEHSB。其中不同保护技术相互结合可以提高通信可靠性,比如PW+L3VPN。按照保护倒转模式的不同可以分为三类:隧道保护、业务保护及网关保护。①隧道保护,主要保护网络内部链路和节点,能够保证倒换前后业务节点不变,及采用保护技术包括LDP快速收敛、LSP、TEFRR三种技术;②业务保护,主要保护前后业务源宿节点,能够汇聚汇聚路由器、RANER以及EPCCE节点故障,主要采用的保护技术包括PWRedun-dancy、VPNFRR、BFDforPW、BFDforTunnel;③网关保护,用于EPCCE及EPC与EPCCE之间的链路故障检测,相应的保护技术为E-VRRP。

无线通信论文(篇6)

1.1静电耦合机制及其物理模型

首先我们来介绍WHBC的静电耦合传输机制。发射接收信号的电路、放在人体上或者人体附近的电极、导电的人体(相当于一个电阻)、电极和大地之间的耦合电容可构成一个闭合回路。整个闭合回路可被看作为一个二端口网络,发射端的信号电极和地电极是其信号输入端,接收端的信号电极和地电极是其信号输出端,已知电路中的各电阻及电容的值,就可根据电路知识求出信号的路径损失。由于静电耦合作用(即二端口网络电路中的耦合电容)是该传输原理中的关键所在,因此称该原理为静电耦合原理。其中发送端和接收端信号电极可以直接贴在人体皮肤上或者靠近人体皮肤的邻近区域(例如紧贴衣服上),发送端和接收端的地电极悬空或者贴在皮肤上。但Luˇcev等证明信号电极直接与皮肤接触、地电极悬空的电极结构可以得到最小的路径损失。Xu等根据静电耦合机制设计了一个WHBC通信系统,其系统模型使用了有限元件建模方案。该系统模型包含了大气、人体、发射端电路和接收端电路。其中大气分为三个区:近域区、过渡区和远域区;人体模型则由手臂、胸部、腹部和脚组成,而各器官分别由对应的皮肤、脂肪、肌肉层组成。模型的仿真结果在低频和实际测得的数据相差不大,但在高频段差别就有些大,还需要仔细研究。

1.2人体作为波导的传播原理及其物理模型

有些研究人员把人体看作波导,从电磁波传播的相关原理方面建立人体信道的计算模型。发射机的信号电极与其地电极是电磁波的发射源,人体表面是人体与空气之间的边界面,信号的传输过程可看作一种特殊情况的表面波传输。已知人体表面的电介参数,根据麦克斯韦方程和人体空气边界条件可求出在人体表面各点的电场强度、磁场强度以及路径损失。Fujii等用有限差分时域方法(finitediffer-encetimedomain,FDTD)建立WHBC模型。在FDTD计算方法中,使用了日本成年男性和女性的高精度身体模型。实验中用生物组织固体人体等效模型验证文中提到的理论模型,结果虽还不错,但模型跟真实的人体毕竟不一样,该方法的有效性还需通过真实的人体加以验证。

1.3其它的WHBC传输原理和模型

近期Bae等提出了新的WHBC传输原理,该原理同样把发射端的信号电极和地电极看作电磁波的发射源,但认为仅电磁波的电场可传播信息,电磁波的磁场不起传递信息的作用,同1.2一样利用麦克斯韦方程组可得到人体表面的电强度和路径损失。论文提出的理论很新颖,能够综合现有的两套理论,但其仿真结果和实验结果在低频处却有较大的误差,还需进一步完善。Ruiz等利用实验数据建立了一个WHBC分析模型。方法是从现有的各种分布函数中选择一个与实际测得的路径损失的累积概率分布最接近的一个分布类型,然后用数学方法估计在某一确定距离下该分布类型的参数,接着求出该分布函数的参数与(发射接收)距离之间的关系,从而得到想要的模型。这种方法对硬件设计有一定的指导意义,但由于缺乏内在的物理原理的支撑,有很大的局限性。

2WHBC中的数字基带传输机

除了WHBC的传输理论有诸多进展,WHBC传输机也颇有些硕果。Lont等设计了一个数据速率可调的基于移频键控(frequencyshiftkeying,FSK)的超低功耗数字接收机。Song等则利用0.25μm标准CMOS工艺设计了一个功耗为0.2mW、速率为2Mb/s的数字传输机,其原理图。图中上半部分为发射机,下半部分为接收机。发射机由伪随机二进制序列(pseudo-ran-dombinarysequence,PRBS)产生器、二选一多路复用器和驱动器组成。PRBS是芯片测试时需要用到的功能部件。数字信号可直接通过二选一多路复用器、驱动器传到人体。接收机由接收AFE模块、CDR电路和位错误探测器组成。接收AFE模块用于放大、触发、反向从电极接收到的宽带信号,以恢复二进制数据。CDR电路模块从恢复的二进制模块中提取时钟信号并锁存数据。位错误探测器是芯片测试时需要用到的功能模块。当反向不归零制(non-return-to-zero,NRZ)数据直接输入到人体后,发射端电极产生对称的静电场(分别对应二进制数据1和0),在该静电场的激发下接收端的电极感受到一个由正负脉冲组成的微弱宽带脉冲信号,对这些信号进行放大、触发、反向的操作就可在接收端恢复输入人体的二进制数据。Song等改进了TX的结构,使用了脉冲位置调节模块,把NRZ数据的频带移到10~70MHz。Fazzi等则在RX中增加了相关电路,抑制噪声的能力更强。然而即便如此,这样的通信系统还是很容易受到外界的干扰,需要其它的技术抑制这种干扰,我们将在第3部分中进行讨论。

3WHBC中的干扰及AFH技术

3.1WHBC中的干扰

人体可被看作天线,漂浮的和接地的人体在电磁场中的谐振波长分别为人体身高的2倍和4倍,同时人体的谐振频率峰值不是尖锐的,而是宽广分布的,因此人体天线效应能够将频带分布宽广的射频信号注入到WHBC通信系统中。根据Cho等的实验结果,这些干扰信号在一些环境下(调幅射频塔或者无绳电话附近等)能够把有用的信号淹没,一般的数字传输机不能在这种变换的环境下稳定地工作,需要新的传输机来抑制这些干扰。

3.2AFH原理

WHBC中的干扰随环境变化而变化,但均只占某一有限的带宽。为了增强系统的抗干扰能力,我们把可用的WHBC总带宽根据具体的应用(数据传输速率的要求)平均分成N个不重叠的子带宽,每一个子带宽可看作一个通信频道。最开始所有的通信频道均参与信息的传输,它们均处于跳频序列之中。WHBC设备节点每隔一段时间根据一定的评判原则将跳频序列中所有的频道分为好频道和坏频道。好频道继续使用并等待下一次评判;坏频道从跳频序列中剔除,但一段时间之后系统会重新检查上次被评为“坏频道”的频道的通信质量,只要被评定为好频道,系统又会将其纳入跳频序列之中。其中频道评价准则可以使用接收的信号强度指示(re-ceicedsignalstrengthindicator,RSSI)、分组错误率(packeterrorrate,PER)和载波敏感度(carriersensing,CS)准则。使用的是PER信道评判准则,其中PSR(packetsuccessratio)为分组成功率,Ps为合格频道的PSR阈值。AFH技术源自蓝牙,但AFH在WHBC中的适应性强过蓝牙,因为一般情况下WHBC的覆盖范围仅限于穿戴者的本身,不会产生不同WHBC之间的串扰,而蓝牙ZigBee等则会因为不同设备之间使用相同的通信频道而产生动态频率干扰。Cho等就利用AFH技术设计了适用于人体通信的传输机,达到了很好的抗干扰效果。

无线通信论文(篇7)

一、概述

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国-七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

无线通信论文(篇8)

LTE是LongTermEvolution的简称,主要将其看作3G向4G演变的一种新型的通信系统,替代了传统的2G/3G的通信系统。以OFDM以及MIMO等技术为核心的LTE无线通信技术,具有较高的下载能力,同时还能够哎20MHz的频谱宽带上提供上下行分别为50Mbps、100Mbps的高峰值速率。除此之外,该技术还可以使边缘用户的性能得到提升、使系统的延迟性得到降低。由此可见,LTE无线通信技术和传统的通信技术相比,其存在的诸多优势能够极大的满足现阶段物联网发展过程中的各项需求。

2LTE无线通信技术与物联网技术的结合

在物联网的主流业务模型中,有各种类型的业务、数据包频库、属性、终端密度等等,但是物联网的数据模型和QQ一样,模型较小、频率较高,因此极易使网络资源出现浪费的现象,从而导致网络效率较低,这一现象对物联网的发展产生了极大的阻碍。面对该种情况,LTE无线通信技术与物联网的结合就显得尤为重要。两项技术相互结合有着重要的意义。一方面,和传统通信技术不同,LTE无线通信技术作为发展的新型技术,LTE的终端在LTE与物联网技术相结合以及创新过程中发挥着非常重要的作用,而且物联网的各项应用要想得到快速发展,需要借助LTE技术终端的普及和推广来实现。另一方面,随着信息技术的快速发展,物联网信息的种类以及数量等都在不断增加,因此需要分析的数据量也在随之上升。与此同时,各种异构网络或者是两个以上系统之间的数据融合问题以及如何更加合理、有效的处理、整合数据信息等问题都成为物联网现阶段面临的重要难题。但是在这个LTE无线通信技术发展的时代,与物联网技术的相结合,可以更好的解决这一问题。对于物联网感知层面而言,LTE终端不仅需要对LTE天线以及LTE射频分别与射频识别、定位系统等技术进行研究和分析,还需要对LTE基带与射频识别基带的多模集成技术进行研究。在这些方面,LTE无线通信技术发挥着重要的作用。对于物联网的网络层面而言,2G/3G、WIFI以及有限网络是现阶段应用最为广泛的传输技术。因此,在LTE终端中,重点则是对无线传感器网络与LTE网络技术结合的过程进行研究,从而使异构网络运行更稳定、更快捷。在物联网的应用层面上,主要是实现物联网大量信息的存储和处理,并对数据挖掘、影像智能分析等进行解决和研究。在物联网的应用中,云计算是解决这写问题的关键所在。因此,将物联网技术与LTE技术融合,主要是实现云计算技术与LTE无线通信技术的融合,这样既可以使数据中心具有较高的安全性以及可靠性,还使得互联网服务便利又廉价,同时达到与LTE终端信息数据共享的目的。两项技术的结合,就能够有效避免信息泄露、黑客入侵等情况的发生。

二LTE无线通信技术

在物联网技术中的应用LTE无线通信技术与物联网技术的结合中,在物联网中,需要价格传感器以及控制器等通过局域网络来实现传感器的叠加,通过该种方式将LTE无线通信接入其中,此时大量的数据会通过局域网络进入到LTE无线通信中,这一过程产生的小规模、大频率的业务包会对无线网络造成巨大的压力。LTE无线通信技术主要是利用OFDM技术将庞大的信息传输信道分成若干个小的信息传输信道,在高速数据流得到转换的同时可利用层二调度器实现对无线资源的控制,使得小规模、高频率的业务包在LTE无线通信的条件下得以实现。此外,在LTE无线通信核心系统因为缺少主动释放的功能,无法在尚未检测到信息使就自动对链路进行释放,只有在接受入网消息的情况下,或者是以一定的方式告知核心网后才会实现该功能。LTE无线通信技术与物联网结合,如果从核心网的角度上看待该项技术在物联网中的应用。手机作为人们信息、数据交流、沟通和互换的重要手段,在使各项信息进行传输之后必须建立无线承载,此时便利用NAS作为消息传送的媒介,将相关数据向核心网进行传送,在这一过程中需要建立QCI无线承载来实现信息的传输。在数据信息传送的整个过程中,LTE系统的核心网络并未建立主动释放功能,只有在接收到了接入网的消息的情况下,或者是UE通过了NAS的消息通知,才能进行核心网的释放。如果从接入网方面来看,应该按照核心网的QCI参数设置对新接入的网络进行设置,而且LTE用户在进行数据传输得不知所措,不知道怎么学习了;(3)部分学习能力强的学生到了大学后,由于环境的改变,没有高考的压力,学习也变得懈怠。

三学习适应性对高职高专英语教学的影响

1促进教学方法、教学材料的改革学习

在高职高专实用英语课程中,以能力导向型教学法为基本的指导原则,并不意味排斥其他的教学方法,因为没有那一种教学法可以解决所有的教学活动中遇到的问题。还可以根据不同的教学活动,有变通的选择其他教学方法的应用,例如:合作学习语言法、内容型教学法、任务型教学法等,都可以尝试的应用到教学过程中,也能增强教学活动的趣味性。在教学活动中,相应的教学材料应该承担起指导、说明的作用:(1)教学材料应该集中体现人际交往能力的培养,表达、谈判等实用技能;(2)教学材料应该是易懂的、相互关联的、有趣味的,特别强调教学材料服务于工作过程整体性原则;(3)教学材料应满足学生自主学习的要求。内容的过难、过易都不利于学生的自主学习,因此要指导明确,难易适中。

2增强学生的学习自主性

学生是整个教学活动的主体,要激发学生的主观能动性,可以通过以下几点:(1)明确学习目标。学生在明确教学任务的基础上,独立完成教学活动的所有内容;(2)完善教学材料。在以贴近实际应用的语言环境为依托的教学活动中,学生自主形成评价机制。培养学生独立自主的学习习惯,自主筛选出工作环境中所使用到的英语语言应用能力,有意识的自我培养;(3)在于他人的交谈中,学会使用语言。语言的使用过程是交流的动态过程,不可避免的要与人交流,这样就创造了一个语言的使用环境,学生应体会语言使用的重要性;(4)学生的广泛学习。教学活动的时间是有限的,但是教学活动的指导意义是无限的,积极合理的引导学生,在课外广泛收集工作相关的英语语言是十分必要的。

无线通信论文(篇9)

2信息理论安全原理

Shannon于1949年提出保密通信的理论基础,信息理论安全(InformationTheoreticSecurity)的概念随之建立[5]。在此基础上,Wyner于1975年提出了窃听信道(WiretapChannel)的数学模型[6],这也成为了无线通信信息理论安全研究领域的基石。如图2所示,发送者需要发送的原始信息x,经编码后形成发送信号X,通过无线信道传输给合法接收者,接收到的信号为Y;同时,窃听者通过窃听信道进行窃听,其接收到的信号为Z。Wyner已经证明,只要窃听信道是合法通信信道的“恶化版本”(DegradedVersion),即窃听信道的噪声大于合法通信信道,则合法通信的双方总能够通过信道编码(注:广义上,按照Shannon的通信系统模型,除了信源编码,其余所有操作都属于信道编码)实现大于零的保密传输速率,即无线通信系统可以实现无条件的通信安全,即“完美保密性”(PerfectSecre-cy)[6]。保密容量给出了存在窃听信道的无线通信系统实现完美保密性传输的传输速率理论上界,所有可达的保密传输速率C须满足C≤Cs。此后,Leung和Hellman将Wyner的理论推广至加性高斯白噪声信道,并求解出了高斯窃听信道的保密容量解析表达式[7],Csiszar和Korner则求解出了更一般的广播窃听信道的保密容量解析表达式[8]。近年来,信息理论安全领域的研究主要集中在无线衰落信道、MIMO信道、多用户窃听信道、混合窃听信道以及与实际调制方式(离散有限符号集)的结合,并在各种信道模型下研究保密容量、平均安全传输速率和保密通信中断概率等问题[9-14]。此外,文献[15]还研究了窃听者利用干扰中继的窃听信道模型下,力求最小化保密速率的干扰中继与力求最大化保密速率的发送者之间的博弈问题。信息理论安全从信息论的角度给出了在各种信道模型下实现完美保密性传输的可行性,合法通信双方无需通过密码技术对信息进行加密传输,也能够达到保密通信防止窃听的目的。但是,信息理论安全目前仍然局限于理论研究的范畴,其用于研究的信道模型往往需要有一些限定或假设,例如一般要求合法通信信道优于窃听信道、要求信道信息准确可知等。理论研究虽然给出了可行性,但并未提出具体的实现方式———目前尚无实际可用的广义信道编码方案来实现信息理论安全保障的传输速率。在实际应用中,信息理论安全原理可以提供一些有益的参考思路,但人们仍然需要依靠具体的物理层安全技术来切实增强无线通信的安全性。

3发射信号方式安全技术

在Wyner的窃听信道模型中,要获得大于零的保密容量,需假设窃听信道的容量小于合法接收信道的容量。然而,如果窃听信道的质量优于合法接收信道(例如窃听者的位置相对合法接收者距发送者更近),则保密容量为零,合法通信双方无法保证通信保密。为解决这一问题,Goel和Negi提出了对信道添加人为噪声以恶化窃听信道从而保证合法通信双方的“最低保密容量”(MinimumGuaranteedSe-crecyCapacity)[16]。该思想基于无线衰落信道场景,假设发送者(或功放中继器模拟)的发射天线数量严格大于窃听者的接收天线数量,发送者可以利用一部分可用功率产生人为噪声,通过多天线发射到信道当中。发端产生的人为噪声必须被设计成仅仅只对窃听信道形成干扰,而不影响合法接收信道的信息传输。为此,文献[16]提出,将人为噪声产生在合法接收信道的“零空间”(NullSpace)之中,而信息则是通过合法接收信道的“值域空间”(RangeSpace)进行传输,如此散布在“零空间”中的人为噪声将不会影响合法接收信道的信息传输,这种设计必须依赖合法接收信道的精确信息。而通常情况下,由于窃听信道的“值域空间”与合法接收信道不同,散布在其“值域空间”中的人为噪声将对其形成干扰,严重恶化窃听信道的质量。如此,通过选择性地恶化窃听信道,合法通信双方即可保证大于零的保密容量。但是,这种技术需要精确知悉信道状态信息(CSI,ChannelStateInformation),并且假设CSI完全公开,即通信的保密性独立于CSI的保密性,因此在实际应用中受限。同样是针对MIMO无线通信中的信息理论安全问题,Li和Ratazzi提出了MIMO参数随机化技术[17],即在发端随机化MIMO发射参数,使得发射信号矢量对窃听者来说未知。由于窃听者必须通过盲解卷积来完成信道估计,而盲解卷积又需要发射信号矢量的统计信息作为先验信息,所以窃听者接收端的盲解卷积可被证明是不确定的,这直接导致窃听者的接收误码率为50%,理论上可实现完美保密性。而窃听者唯一的破解手段———穷举搜索,其计算复杂度处于极高的量级,这也使得该技术具有较好的实用性。文献[17]中还讨论了应用该技术实现密钥协商,在物理层以信息理论安全手段辅助上层的信息安全设计。

4扩频和跳频加密技术

扩频通信,自20世纪50年代美国军方开始研究,因其优良的抗干扰性能,一直为军事通信所独有,直到近三十年才逐渐被应用到民用卫星通信和移动通信。由于跳频也是扩频的一种形式,为分开描述,本节所述的扩频专指直接序列扩频。目前实际应用最多的物理层加密技术无疑是扩频加密和跳频加密,多用于高安全标准的军事卫星通信系统和战术无线通信系统,典型如美军的联合战术信息分发系统(JTIDS,JointTacticalInformationDistributionSystem)。直序扩频需要利用高频伪随机序列来进行扩频调制/解调,实现信号频谱扩展;跳频同样需要利用伪随机序列来控制载波频率跳变的时间和持续的时间,实现频率跳变规律的伪随机性。扩频和跳频对伪随机序列的依赖使得其天然适合于对称密码的传统加密机制。采用传统加密机制的直序扩频通信系统物理层如图3所示。直序扩频将基带已调制信号按一定规则映射成具有伪随机性的高频扩频码序列,在传统加密机制框架内,扩频码序列的生成以及映射规则都属于密码算法的范畴。最简单的直序扩频采用线性反馈移位寄存器生成的m序列作为扩频码序列,而扩频加密则需采用高强度的密码算法来产生复杂的扩频码序列,在扩频的同时也完成了加密。

5信道编码加密技术

信道编码不仅可以用于纠错,还可以用于公开密钥加密系统。McEliece于1978年提出基于代数编码理论的公钥密码体制,首次将纠错和加密结合到一起[18]。这种结合,使得人们有望通过信道编码与密码体制的一体化设计,同时满足通信系统可靠性和安全性两方面的要求,从而达到减少系统开销、降低资源需求、提高处理速度的目的。因此,信道编码加密技术在学术界一直受到广泛重视。而学者们很快也意识到,这种结合如果没有精良的设计,将使系统可靠性和安全性同时下降,所以这个问题颇具挑战性。McEliece公钥密码体制最初使用的是Goppa码,缺点是密钥开销大,信息速率低。随着信道编码技术的不断发展,各种信道编码都有基于上述密码体制的研究,并且衍生出了基于McEliece体制的对称加密算法,即类McEliece加密算法。最近的研究主要集中在采用低密度奇偶校验(LDPC,Low-DensityParity-Check)码的加密体制。其中,准循环(QC-,Quasi-Cyclic)LDPC码因以下四个方面的优势而获得重点关注:①QC-LDPC码结构简单,便于设计,同时能够提供比拟于一般随机构造LD-PC码的优异性能;②得益于其校验矩阵的低密度准循环阵列结构,可基于相同的码长、度分布等决定码性能的参数,构造大量不同的QC-LDPC码,增加系统的安全性;③QC-LDPC码便于利用比较简单的电路结构进行编码和解码,可以实现编/解码速率和硬件复杂度之间的良好折中,因此可以支持高速的加/解密;④校验矩阵的稀疏特性和规则的阵列结构,使得即使码长很长,也只需要很小的密钥开销。因此,将QC-LDPC码应用于McEliece体制的加密系统,可以获得较高的信息速率、较低的加/解密复杂度和很低的密钥开销。在此方面的研究主要是基于LD-PC码的加密方案的设计或改进、可靠性和安全性的折中等[19-22],另一个研究方向则主要针对所提方案的安全性进行密码分析和攻击方法研究[23-25]。

6调制方式加密技术

调制方式加密技术是近年来新出现的物理层加密技术,其思想是在基带数字调制时,对信息比特映射成星座符号的形式进行加密,典型方案是Ma等人提出的基于伪随机星座图旋转及添加微弱人为噪声的物理层加密方法[26]。如图5所示,在发送端,信息比特完成星座调制之后,对整个星座图进行伪随机的相位旋转,旋转角度由合法通信双方约定的加密密钥产生。在高传输速率的情况下,窃听者破译该旋转角度序列的难度很大,因此无法正确恢复发送信号。而合法接收者一旦实现星座图旋转同步,即可持续跟踪并正常进行解调。控制星座图旋转角度的方式可以通过伪随机序列经可逆线性或者非线性变换来得到。文献[26]提出将混沌序列用于产生旋转角度序列,这种序列具有良好的伪随机特性,具备非周期的随机过程特征,因此安全性较好。文献[26]同时提出,利用无线信道的物理不可逆性,在发送端将微弱人为噪声叠加到已经随机旋转后的星座图上,可进一步增强物理层安全性。该微弱人为噪声的功率远远小于系统归一化的信号功率,如噪声功率是信号功率的万分之一或十万分之一等不同的功率等级。噪声添加的方式可以直接添加高斯噪声,或者在假设存在回传信道的前提条件下根据信道信息来添加。图6中,图6(a)表示正常16QAM星座图;图6(b)表示伪随机相位旋转之后的星座图;图6(c)表示在旋转后的星座图上叠加微弱人为噪声后用于发射的星座图;图6(d)表示合法接收者完成旋转恢复后的星座图。可见,对于已知星座图随机旋转角度序列的合法接收者,该人为噪声的添加对解调影响极小,而对于未知星座图旋转角度的窃听者将会产生严重的误码,同时人为噪声的添加也大大降低了窃听者在信道噪声为零的极端最优条件下通过穷举等方式破译密钥的可能性。另一方面的研究是根据信息理论安全原理对调制方式进行优化选择。对于高斯信道,输入为高斯随机码本被证明可以达到保密容量。然而在实际中无法实现理想的高斯输入分布,因此有必要研究常见的调制方式在星座图限制下的最大可达保密速率。在调制方式的选择上,现在主流的方案大都仍然采用均匀正交幅度调制(QAM,QuadratureAmpli-tudeModulation)星座图。而幅度相位移相键控(APSK,AmplitudePhaseShiftKeying)星座图作为类高斯星座图的一种,相比于同阶数的QAM星座图,可以更加接近高斯分布,因此可获得可观的Sha-ping增益,在星座图限制下的信道容量更加逼近香农极限。Ma等人利用APSK星座图优异的互信息特性,将其应用于保密通信。通过研究对比APSK与QAM在星座图限制下的最大可达保密速率,证明了APSK应用于保密通信时的性能优势,同时还给出了根据不同保密速率的需求来选择调制方式的策略[27]。

7其他物理层安全技术

除前面介绍的加密技术之外,还有很多增强物理层安全的技术,包括结合信道特性的预编码、射频指纹识别、定向天线等等。结合信道特性的预编码技术[28]是基于代数信道分解多路(ACDM,AlgebraicChannelDecomposi-tionMultiplexing)通信的系统背景,在发端对合法通信信道的特征矩阵进行奇异值分解(SVD,SingularValueDecomposition),并对发射信号进行相应的预编码处理,生成一组时间离散的发射码矢(TransmitCodeVector),最终使得收端接收到的信号正交,码间(Inter-code)互不干扰。由于信道特性不同,窃听者通过自身的多径信道接收到的信号将存在严重的码间或子信道间(Inter-sub-channel)干扰,从而严重恶化接收质量,阻止窃听。射频指纹识别技术[29]是基于从个体网络信息包的射频波形解析出的物理层特性,对无线局域网进行入侵检测。这些特性包括作为信息包来源的无线用户节点的固有特性,如开机瞬变特性、符号间空值宽度、频率偏差、I/Q不平衡等,以及与连接用户节点和网络接入节点的传播路径有关的特性,如信号强度等。这些特性的统计信息能够作为各个信息包来源在网络中的“指纹”,因此可以提供相应机制来识别恶意节点的欺骗攻击等行为,实现对非法用户的动态检测。采用物理层特性来识别无线节点可从根本上提高攻击者伪装成合法节点的难度。定向天线技术[30]则主要是为了对抗无线网络中的干扰攻击。由于采用全向天线的无线通信容易受到干扰攻击而被阻断连接,在干扰环境下有效保证无线网络的连通性成为实现通信安全的一项前提。定向天线可以通过选择性地发射定向波束,避开干扰区域或选择干扰较弱的区域形成有效链路,从而保证无线网络的连通性。而定向天线与移动性相结合,则可更好地发挥抗干扰效果,提高整个无线网络合法用户的可用容量。

无线通信论文(篇10)

跳频抗干扰技术,是主要应用于超短波通信装备的一种较成熟的抗干扰技术。该技术抗干扰能力很强,广泛应用于民用无线通信系统。无线电发信频率技术是跳频抗干扰的核心技术,它是能按照特定规律、速度来回进行跳变的频率。与传统的无线电发信频率技术相比,该技术可以使载波频率不断跳变而达到频谱扩展的目的,就一般情况而言,无线通信载波频率的跳速高低能够直接反应出该系统的性能好坏。具体来讲,载波频率跳速越高,该通信系统的抗干扰性能也就越好;相反,载波频率跳速越低,该通信系统的抗干扰性能则会越差。除此之外,增加跳频的带宽也能提高无线通信抗干扰性能,带宽增大,抗干扰性能变好,带宽减小,抗干扰性能则变差。

1.2扩频抗干扰

扩频抗干扰技术,它主要是通过有效调整信号功率,从而对合成噪声进行一种编码、解码操作,正是把无线通信设备释放、接收的信号像这样隐藏在波状形的噪声中,就能有效地避免来自外界的电磁干扰。当前,最典型的扩频抗干扰手段是直接序列扩频法,它通过扩展无线信号的频带,降低其功率谱密度也就是说降低单位频带内的功率,这样就能让无线通讯信号在噪声中淹没隐藏。无线通信信号通过利用直接序列扩频法来避免干扰,不仅有很好的隐蔽性,还能实现多径抗干扰的目标。CDMA技术是我国3G(第三代移动通信系统)的关键技术之一,它也是主要使用直接序列扩频法。但是,CDMA用户所使用的扩频码一般不可以做到严格正交即无法准确同步,所以,CDMA技术随机接入多个用户时,它所使用的直接序列扩频法会时常受到多址干扰的影响。因此,这一缺陷会导致CDMA技术的通信质量以及系统容量受到很大程度上的影响,即其抗干扰性能会有所不足。

1.3多入多出或智能传输抗干扰

当前,无线通信领域中,应用度比较高的抗干扰手段还有多入多出抗干扰技术。该技术经过多根发射天线发送信号,同时使用多根接收天线接收无线信号。采用这种信息传输技术时,待传输的信息根据数学表达模型分解成了若干信息通道中的分量形式,所以当其中的一个通道中的信号分量受到干扰因素的影响而有所损耗时,我么可以通过其他分量通道进行逆变换从而得到未损耗的信号,从这里我们可以看出这种技术的特性就是,相对于单一载波信号传输,分通道传输能够有效抵抗信息传输过程的干扰,提高系统安全性。同时,还有经常使用的空时编码技术也能够通过相应技术处理提高信息传输的抗干扰性能,使信息传输更加安全可靠。此外,多入多出技术相对于一般的信息传输技术能够显著的提高总的通信系统容量,有效改善传输系统的通信性能。

2未来无线通信发展抗干扰技术的趋势

2.1自适应抗干扰

现阶段,随着对无线电通信理论研究的不断深入、调制技术和编码技术在无线通信领域中的迅速发展、计算机技术和数字信号处理技术的大量实践应用,调频技术已经突破传统的技术模式,向着自适应的方向快速发展。在学科定义上,调频技术是指随着通信系统中通信环境的不断变化,信号传输能力随之进行自动跳频、主动逃避受干扰频点等来适应环境变化,提高信息传输能力。自适应抗干扰的技术分类有很多,比如:频率自适应、功率自适应、速率自适应等。但是无论技术方法怎么变化,我们的目的只有一个:通过不断的进行信号选频和信号换频来保证无线电通信系统的信号通道在通信条件不断变化的情况下仍然处于良好的性能状态。

2.2超窄带抗干扰

超窄带技术是相对于超宽带技术而言的,超宽带技术的理论和方法已经非常的成熟,这种技术通过将待传输信号的能量在比较大的传输宽带上进行分散操作,避免不利的通信条件对通信系统造成影响。相对而言,超窄带技术就是将传输信号限制在带宽比较窄的传输通道中进行信号能量的相对集中,对于频带之外的信号能量传输时将其忽略,同样这种技术也可以提高通信系统的稳定性。

2.3组合集成抗干扰

在对多种传统的通信技术及其抗干扰技术的应用研究的基础上,我们可以将这些技术进行合理的集成,从而扬长避短,发挥各项技术的优势,例如:如跳频/扩频混合技术及时基于这样的设计理念。但是理论上讲,混合技术的集成过程比单一技术的研究使用要困难的多,这种困难不仅体现在理论上也体现在实现上,但是这种技术集成模式能够有效的提高信号传输的稳定性和安全性。比如上面所讲的跳频/扩频混合技术,这种方式在集成时不是简单地将处理增益相叠加,而是采用混合技术得到相对于单一技术模式下更大的处理增益,它是通过将频带拓宽和增加跳频效果实现的。智能天线在无线电通信中的定向接收方面和抗干扰方面都有着很好的技术指标,所以在智能天线系统中加入方向跟踪技术、分通道接收技术等可以有效的阻止干扰信号在通信接收端的被动接收,从而将接收信号和接收的干扰信号的干扰比大幅度提高,除此之外还可以在信号的发射端使用多天线技术,也可以有效提高传输信号在无线空间中的稳定性能和抗干扰能力。

无线通信论文(篇11)

随着无线通信系统的自动化装备越来越先进,设备电路的精密集成度日益提高。感应雷电及雷电电磁脉冲的入侵很容易损坏相应的电子、电气设施,加之无线通信设备自有的室外天线和电缆馈线等的,感应雷击的危害明显增加,仅靠避雷针已远远不能满足无线通信台站设备的防雷实际需求,因此,对系统工作地和保护地的要求更加严格,必须从细节抓起、从源头治理、全方位着手,在抓好系统接地工作的基础上,对台站设备实施综合防雷工程。要对设备防雷要认真规划、设计、施工,设备接地工作必须严格要求、高度重视,务必做到系统接地关即:连线坚固、地网可靠、泄流畅通,总的来说,在一个工作区域内,尽量将邻近的机房、铁塔、天线、变压器、配电柜、通信电缆统筹考虑,按均压、等电位的原理把工作地、保护地和防雷地组成一个联合接地网,台站内各类接地线应从接地汇集线或接地网上分别引入,扩大地网范围,增强整体防雷能力。

一、无线通信防直接雷的接地工作

对于防直接雷袭击,我们一般主要采用避雷针、避雷带、避雷网等传统避雷装置,只要设计规范,安装合理,这些避雷设施便能对直接雷进行有效的防御,这种方法经济、简单,但要注意,避雷针应当装在高于天线尖端数米,避雷针与天线之间应有一定的间隔,以防止由于避雷针的存在而损坏天线的辐射图形影响通信效果。一般的做法是避雷针成为天线塔体的主杆,通信天线装在避雷针外线大约1.5个波长以外。由于避雷针带接触雷击的强度较大、范围较广,首先要确保其具有良好的电流泻放通道,主要接地标准应做到:

1、避雷地线的直流通路的电阻要求足够低,一般为10—500,小于50最佳,由于雷电浪涌电流较大,频谱较宽且持续时间短,因此要求必须有尽量小的电感量。

2、地线不能用扁平编织线或绞合线,因为这种线电感较大,不利于泄放雷击电流,且容易被腐蚀。要尽可能使用3mm以上的实心导线,且最好是相同的金属材料。

3、为了增大地表层的泄放面积,可采用埋设有一定间隔的多根接地体,且相互焊接。如在建筑物的四周以1至2米的间隔埋上10根左右的铜管,并把它们焊接起来。

接地体宜采用热镀锌钢材,其规格要求如下:

钢管φ50mm壁厚不应小于3.5mm。角钢不应小于50mm×500mm×5mm。扁钢不应小于40mm×4mm。

但由于无线通信台站的环境条件不一,其地网往往难以组成沿房屋四周封闭式的环形地网,所以对地网组成方式给予了灵活考虑,但机房工作地、保护地、铁塔防雷地三者应共同地网,且要求铁塔与建筑物连通(含地下、楼顶),有困难时也要确保楼顶避雷带与铁塔地网连通。对于地处市郊、多雷区(年雷暴日大于20天以上)或建筑物较高而得不到周围建筑物防雷设施保护的台站,其地网应在地下、地面上作多点(两点以上)焊接连通,特别注意的是,在地网焊接连通时要与设备断开操作,以确保系统安全。

除了做好室外防雷设施的有效接地外,从防雷工程的系统性和综合性来考虑,还要注意通信机房内相关设施的联合接地,即机房内走线架、吊挂铁架、机架或机壳、金属通风管道、金属门窗等均应作保护接地,保护接地线一般宜采用截面积不小于35mm2的多股铜导线。按照《通讯局(站)防雷与接地设计规范》要求,对机房的接地引入线长度不宜超过30m,其材料为镀锌扁钢,截面积不宜小于4mm×40mm或不小于95~2的多殷铜线。接地引入线应作防腐、绝缘处理,并不得在暖气、地沟内布放,埋设时应避开污水管道和水沟,在地面以上部分,应有防止机械损伤的措施。

二、无线通信防感应雷的接地工作

无论多么完善的避雷针,对感应雷击都无能为力,由于其来自线路的感应电流,加之有的系统屏蔽差,以及没有采取有效的等电位连接措施、综合布线不合理、接地不规范造成地电位反击等,因此需要运用完善的综合防雷手段,在电源和馈线等线路上安装相关的避雷器SPD,与合格的避雷针有机结合、相互补充,构成一套完整的防雷体系。而对任何先进、科学的防雷器件而言,设备的本身接地和防雷器的接地都尤为重要,一般要求通信机房地阻不超过10,这也是保证避雷设备发挥作用的前提和关键。

1、机房内的设备首先要做到保护地、工作地等电位连接,特别是相关设各机箱的外壳必须接地,以最大程度上减少二次感应雷击的危害。对接地汇集线和接地排的要求较高,它一般设计成环形或排状,材料为铜材,截面积不应小于120mm2,也可采用相同电阻值的镀锌扁钢,机房内的接地汇集线可安装在地槽内、墙面或走线架上,接地汇集线应与建筑钢筋保持绝缘。

无线通信论文(篇12)

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。

(七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

精选范文
相关文章
推荐期刊